Skip to main content
Metrics
34,053 Downloads
Featured Dataverses

In order to use this feature you must have at least one published dataverse.

Publish Dataverse

Are you sure you want to publish your dataverse? Once you do so it must remain published.

Publish Dataverse

This dataverse cannot be published because the dataverse it is in has not been published.

Delete Dataverse

Are you sure you want to delete your dataverse? You cannot undelete this dataverse.

Find Advanced Search

1 to 6 of 6 Results
Mar 26, 2020 - Empirical Linguistics and Computational Language Modeling (LiMo)
Rehbein, Ines; Ruppenhofer, Josef; Do, Bich-Ngoc, 2020, "tweeDe", https://doi.org/10.11588/data/S90S35, heiDATA, V1
A German UD Twitter treebank, with >12,000 tokens from 519 tweets, annotated in the Universal Dependencies framework
Oct 7, 2019 - Empirical Linguistics and Computational Language Modeling (LiMo)
Marasović, Ana; Zhou, Mengfei; Frank, Anette, 2019, "The MSC Data Set", https://doi.org/10.11588/data/JEESIQ, heiDATA, V1
From this page you can download resources we created for modal sense classification as reported in Zhou et al. (2015), Marasović et al. (2016) and Marasović and Frank (2015) (see "Related Publication" below): Heuristically sense-annotated training data acquired from EUROPARL and...
Sep 2, 2019 - Empirical Linguistics and Computational Language Modeling (LiMo)
Wiegand, Michael, 2019, "Opinion role extractor", https://doi.org/10.11588/data/3W7AQP, heiDATA, V1
System for the Extraction of Subjective Expressions, Sentiment Sources and Sentiment Targets from German Text
Mar 26, 2020 - Empirical Linguistics and Computational Language Modeling (LiMo)
Rehbein, Ines; Ruppenhofer, Josef, 2020, "German causal language annotations and lexicon (verbs, nouns, prepositions) (DE)", https://doi.org/10.11588/data/ZHI94V, heiDATA, V1
Annotations of causal verbs, nouns and prepositions in context and lexicon file for causal verbs, nouns and prepositions.
Jul 15, 2019 - Empirical Linguistics and Computational Language Modeling (LiMo)
Nastase, Vivi; Fritz, Devon; Frank, Anette, 2019, "DeModify", https://doi.org/10.11588/data/KIWEMF, heiDATA, V1
deModify consists of 3631 instances, each with three annotations obtained through CrowdFlower. An instance is a short story in which a modifier is annotated with respect to its impact on the information in the story, assessed through its deletion from the context: crucial, not-cr...
Mar 26, 2020 - Empirical Linguistics and Computational Language Modeling (LiMo)
Rehbein, Ines; Steen, Julius; Do, Bich-Ngoc; Frank, Anette, 2020, "Converter for content-to-head style syntactic dependencies", https://doi.org/10.11588/data/HE3BAZ, heiDATA, V1
A set of Python scripts that convert function-head style encodings in dependency treebanks in a content-head style encoding (as used in the UD treebanks) and vice versa (for adpositions, copula and coordination). For more information, see (Rehbein, Steen, Do & Frank 2017).
Add Data

Sign up or log in to create a dataverse or add a dataset.

Share Dataverse

Share this dataverse on your favorite social media networks.

Link Dataverse
Reset Modifications

Are you sure you want to reset the selected metadata fields? If you do this, any customizations (hidden, required, optional) you have done will no longer appear.

Contact heiDATA Support

heiDATA Support

Please fill this out to prove you are not a robot.

+ =