Skip to main content
Metrics
38,992 Downloads
Featured Dataverses

In order to use this feature you must have at least one published dataverse.

Publish Dataverse

Are you sure you want to publish your dataverse? Once you do so it must remain published.

Publish Dataverse

This dataverse cannot be published because the dataverse it is in has not been published.

Delete Dataverse

Are you sure you want to delete your dataverse? You cannot undelete this dataverse.

Find
Advanced Search

31 to 40 of 60 Results
Mar 26, 2020 - Empirical Linguistics and Computational Language Modeling (LiMo)
Rehbein, Ines; Ruppenhofer, Josef, 2020, "MACE-AL-TREE", https://doi.org/10.11588/data/THPEBR, heiDATA, V1
An method for detecting noise in automatically annotated dependency parse trees, combining MACE (Hovy et al. 2013) with Active Learning.
Mar 26, 2020 - Empirical Linguistics and Computational Language Modeling (LiMo)
Rehbein, Ines; Ruppenhofer, Josef; Steen, Julius, 2020, "MACE-AL", https://doi.org/10.11588/data/C2OQN4, heiDATA, V1
A method for detecting noise in automatically annotated sequence-labelled data, combining MACE (Hovy et al. 2013) with Active Learning.
Jun 13, 2020 - Statistical Natural Language Processing Group
Beilharz, Benjamin; Sun, Xin, 2019, "LibriVoxDeEn - A Corpus for German-to-English Speech Translation and Speech Recognition", https://doi.org/10.11588/data/TMEDTX, heiDATA, V2
This dataset is a corpus of sentence-aligned triples of German audio, German text, and English translation, based on German audio books. The corpus consists of over 100 hours of audio material and over 50k parallel sentences. The speech data are low in disfluencies because of the...
Sep 2, 2019 - Empirical Linguistics and Computational Language Modeling (LiMo)
Wiegand, Michael, 2019, "Lexicon of Abusive Words (EN)", https://doi.org/10.11588/data/MKPEYV, heiDATA, V1
This goldstandard contains a bootstrapped lexicon of abusive words. The lexicon comprises a large set of English negative polar expressions annotated as either abusive or not.
Aug 19, 2019 - Empirical Linguistics and Computational Language Modeling (LiMo)
Kotnis, Bhushan, 2019, "KGE Algorithms", https://doi.org/10.11588/data/CSXYSS, heiDATA, V1
An updated method for link prediction that uses a regularization factor that models relation argument types Abstract (Kotnis and Nastase, 2017): Learning relations based on evidence from knowledge repositories relies on processing the available relation instances. Knowledge repos...
Jun 6, 2019 - IWR Computer Graphics
Mara, Hubert, 2019, "HeiCuBeDa Hilprecht - Heidelberg Cuneiform Benchmark Dataset for the Hilprecht Collection", https://doi.org/10.11588/data/IE8CCN, heiDATA, V1
The number of known cuneiform tablets is assumed to be in the hundreds of thousands. A fraction has been published by printing photographs and manual tracings in books, which is collected by the online Cuneiform Digital Library Initiative (CDLI) catalog including some of these im...
Sep 2, 2019 - Empirical Linguistics and Computational Language Modeling (LiMo)
Wiegand, Michael, 2019, "GermEval-2018 Corpus (DE)", https://doi.org/10.11588/data/0B5VML, heiDATA, V1
This dataset comprises the training and test data (German tweets) from the GermEval 2018 Shared on Offensive Language Detection.
Jan 20, 2021 - Empirical Linguistics and Computational Language Modeling (LiMo)
van den Berg, Esther; Korfhage, Katharina; Ruppenhofer, Josef; Wiegand, Michael; Markert, Katja, 2020, "German Twitter Titling Corpus", https://doi.org/10.11588/data/AOSUY6, heiDATA, V2, UNF:6:14BxjwJS7Q3mfI6ei7iBBw== [fileUNF]
The German Titling Twitter Corpus consists of 1904 stance-annotated tweets collected in June/July 2018 mentioning 24 German politicians with a doctoral degree. The Addendum contains an additional 296 stance-annotated tweets from each month of 2018 mentioning 10 politicians with a...
Mar 26, 2020 - Empirical Linguistics and Computational Language Modeling (LiMo)
Rehbein, Ines; Ruppenhofer, Josef, 2020, "German causal language annotations and lexicon (verbs, nouns, prepositions) (DE)", https://doi.org/10.11588/data/ZHI94V, heiDATA, V1
Annotations of causal verbs, nouns and prepositions in context and lexicon file for causal verbs, nouns and prepositions.
Dec 10, 2019 - Empirical Linguistics and Computational Language Modeling (LiMo)
Becker, Maria, 2019, "GER_SET: Situation Entity Type labelled corpus for German", https://doi.org/10.11588/data/BBQYD0, heiDATA, V1
Semantic clause types, also called Situation Entity (SE) types (Smith, 2003) are linguistic characterizations of aspectual properties shown to be useful for tasks like argumentation structure analysis (Becker et al., 2016), genre characterization (Palmer and Friedrich, 2014), and...
Add Data

Sign up or log in to create a dataverse or add a dataset.

Share Dataverse

Share this dataverse on your favorite social media networks.

Link Dataverse
Reset Modifications

Are you sure you want to reset the selected metadata fields? If you do this, any customizations (hidden, required, optional) you have done will no longer appear.

Contact heiDATA Support

heiDATA Support

Please fill this out to prove you are not a robot.

+ =