Skip to main content
Metrics
33,906 Downloads
Featured Dataverses

In order to use this feature you must have at least one published dataverse.

Publish Dataverse

Are you sure you want to publish your dataverse? Once you do so it must remain published.

Publish Dataverse

This dataverse cannot be published because the dataverse it is in has not been published.

Delete Dataverse

Are you sure you want to delete your dataverse? You cannot undelete this dataverse.

Find Advanced Search

1 to 10 of 19 Results
Oct 26, 2020 - OwnReality. To Each His Own Reality
Schepp, Moritz, 2020, "OwnReality API-only web application", https://doi.org/10.11588/data/KZHLS8, heiDATA, V1
This dataset contains the data platform for the research project "OwnReality. To Each His Own Reality". During the course of the project, data was gathered and entered into a database. In general, this platform allows the integration of that data into web based systems such as co...
Sep 7, 2020 - IWR Visual Learning Lab
Brachmann, Eric, 2020, "Differentiable RANSAC (DSAC) for Visual Re-Localization [Data]", https://doi.org/10.11588/data/3JVZSH, heiDATA, V1
Pre-trained models of our camera re-localization method for the MSR 7Scenes dataset. For more information, also see the code documentation: https://github.com/cvlab-dresden/DSAC
Sep 7, 2020 - IWR Visual Learning Lab
Brachmann, Eric, 2020, "DSAC++ Visual Camera Re-Localization [Data]", https://doi.org/10.11588/data/EGCMUU, heiDATA, V1
Supplementary training data for visual camera re-localization, particularly rendered depth maps to be used in combination with the Cambridge Landmarks dataset. We also provide pre-trained models of our method for the MSR 7Scenes dataset and the Cambridge Landmarks dataset. For mo...
Sep 7, 2020 - IWR Visual Learning Lab
Brachmann, Eric, 2020, "6D Object Pose Estimation using 3D Object Coordinates [Data]", https://doi.org/10.11588/data/V4MUMX, heiDATA, V1
Supplementary training data and binaries for 6D object pose estimation, particularly a dataset of 20 objects under various lighting conditions with RGB-D images, ground truth poses and segmentation as well as 3D models. Additionally, a collection of RGB-D images showing office ba...
Sep 7, 2020 - IWR Visual Learning Lab
Brachmann, Eric, 2020, "Neural-Guided RANSAC for Estimating Epipolar Geometry [Data]", https://doi.org/10.11588/data/PCGYET, heiDATA, V1
Pre-computed sparse feature correspondences for pairs of images (outdoor and indoor) to reproduce the experiments described in our paper, particularly to train and evaluate NG-RANSAC. For more information, also see the code documentation: https://github.com/vislearn/ngransac
Sep 7, 2020 - IWR Visual Learning Lab
Brachmann, Eric, 2020, "Expert Sample Consensus (ESAC) for Visual Re-Localization [Data]", https://doi.org/10.11588/data/GSJE9D, heiDATA, V1
Supplementary training data for visual camera re-localization, particularly pre-computed scene coordinates to the MSR 7Scenes dataset and the Standford 12Scenes dataset. We also provide pre-trained models of our method for the 7Scenes, 12Scenes, Dubrovnik and Aachen (day) dataset...
Aug 27, 2020 - IWR Visual Learning Lab
Brachmann, Eric, 2020, "DSAC* Visual Re-Localization [Data]", https://doi.org/10.11588/data/N07HKC, heiDATA, V1
Supplementary training data for visual camera re-localization, particularly rendered depth maps to be used in combination with the MSR 7Scenes dataset, and the Stanford 12Scenes dataset, as well as precomputed camera coordinate files for both aforementioned datasets. For more inf...
Jul 31, 2020 - Cluster of Excellence - Asia and Europe in a Global Context
Arnold, Matthias; Dober, Agnes, 2020, "Cataloging Cultural Objects (CCO) – The CCO Commons examples in VRA Core 4 XML", https://doi.org/10.11588/data/KKTC9G, heiDATA, V1
“Cataloging Cultural Objects - a Guide to Describing Cultural Works and Their Images” (CCO) provides a data content standard for catalogers of cultural heritage. It is a guidebook for how to populate data elements and where to apply controlled vocabulary standards. The guide is f...
Mar 26, 2020 - Empirical Linguistics and Computational Language Modeling (LiMo)
Rehbein, Ines; Ruppenhofer, Josef; Do, Bich-Ngoc, 2020, "tweeDe", https://doi.org/10.11588/data/S90S35, heiDATA, V1
A German UD Twitter treebank, with >12,000 tokens from 519 tweets, annotated in the Universal Dependencies framework
Mar 26, 2020 - Empirical Linguistics and Computational Language Modeling (LiMo)
Rehbein, Ines; Ruppenhofer, Josef; Zimmermann, Victor, 2020, "Pre-trained POS tagging models for German social media", https://doi.org/10.11588/data/W3JBV4, heiDATA, V1
Pre-trained POS tagging models for the HunPos tagger (Halácsy et al. 2007) the biLSTM-char-CRF tagger (Reimers & Gurevych 2017) Online-Flors (Yin et al. 2015). References: Halácsy, P., Kornai, A., and Oravecz, C. (2007). HunPos: An open source trigram tagger. In Proceedings of th...
Add Data

Sign up or log in to create a dataverse or add a dataset.

Share Dataverse

Share this dataverse on your favorite social media networks.

Link Dataverse
Reset Modifications

Are you sure you want to reset the selected metadata fields? If you do this, any customizations (hidden, required, optional) you have done will no longer appear.

Contact heiDATA Support

heiDATA Support

Please fill this out to prove you are not a robot.

+ =