Skip to main content
Share Dataverse

Share this dataverse on your favorite social media networks.

Metrics
21,258 Downloads
Featured Dataverses

In order to use this feature you must have at least one published dataverse.

Publish Dataverse

Are you sure you want to publish your dataverse? Once you do so it must remain published.

Publish Dataverse

This dataverse cannot be published because the dataverse it is in has not been published.

Delete Dataverse

Are you sure you want to delete your dataverse? You cannot undelete this dataverse.

Find Advanced Search

1 to 10 of 90 Results
Oct 8, 2019 - Empirical Linguistics and Computational Language Modeling (LiMo)
Ruppenhofer, Josef, 2019, "Affixoid Dataset (DE)", https://doi.org/10.11588/data/QKF4LT, heiDATA, V1, UNF:6:+MGK9lTPTXx7Rclu1BpPnw== [fileUNF]
The dataset contains the manual annotations for the COLING 2018 submission "Distinguishing affixoid formations from compounds" by Josef Ruppenhofer, Michael Wiegand, Rebecca Wilm and Katja Markert. 1788 complex words containing one of 7 German suffixoid candidates (e.g. -hai, -go...
Oct 7, 2019 - Empirical Linguistics and Computational Language Modeling (LiMo)
Marasović, Ana; Zhou, Mengfei; Frank, Anette, 2019, "The MSC Data Set", https://doi.org/10.11588/data/JEESIQ, heiDATA, V1
From this page you can download resources we created for modal sense classification as reported in Zhou et al. (2015), Marasović et al. (2016) and Marasović and Frank (2015) (see "Related Publication" below): Heuristically sense-annotated training data acquired from EUROPARL and...
Oct 7, 2019 - Empirical Linguistics and Computational Language Modeling (LiMo)
Marasović, Ana, 2019, "Multilingual Modal Sense Classification using a Convolutional Neural Network [Source Code]", https://doi.org/10.11588/data/ERDJDI, heiDATA, V1
Abstract Modal sense classification (MSC) is aspecial WSD task that depends on themeaning of the proposition in the modal’s scope. We explore a CNN architecture for classifying modal sense in English and German. We show that CNNs are superior to manually designed feature-based cl...
Sep 5, 2019 - Empirical Linguistics and Computational Language Modeling (LiMo)
Wiegand, Michael; Bocionek, Christine; Ruppenhofer, Josef, 2019, "Sentiment Compound Data (DE)", https://doi.org/10.11588/data/LSTRK3, heiDATA, V1
This dataset contains gold standards that are required for building a classifier that automatically extracts opinion (noun) compounds.
Sep 5, 2019 - Empirical Linguistics and Computational Language Modeling (LiMo)
Wiegand, Michael; Ruppenhofer, Josef; Schulder, Marc, 2019, "Sentiment View Lexicon (EN)", https://doi.org/10.11588/data/2JK48O, heiDATA, V1
This gold standard contains sentiment expressions (verbs, nouns and adjectives) that have been annotated according to their (prior) sentiment view. Each sentiment expression is labelled either as actor or speaker view.
Sep 2, 2019 - Empirical Linguistics and Computational Language Modeling (LiMo)
Wiegand, Michael, 2019, "GermEval-2018 Corpus (DE)", https://doi.org/10.11588/data/0B5VML, heiDATA, V1
This dataset comprises the training and test data (German tweets) from the GermEval 2018 Shared on Offensive Language Detection.
Sep 2, 2019 - Empirical Linguistics and Computational Language Modeling (LiMo)
Wiegand, Michael, 2019, "Lexicon of Abusive Words (EN)", https://doi.org/10.11588/data/MKPEYV, heiDATA, V1
This goldstandard contains a bootstrapped lexicon of abusive words. The lexicon comprises a large set of English negative polar expressions annotated as either abusive or not.
Sep 2, 2019 - Empirical Linguistics and Computational Language Modeling (LiMo)
Wiegand, Michael, 2019, "Opinion role extractor", https://doi.org/10.11588/data/3W7AQP, heiDATA, V1
System for the Extraction of Subjective Expressions, Sentiment Sources and Sentiment Targets from German Text
Sep 2, 2019 - Heidelberg University Language and Cognition Lab
Gerwien, Johannes, 2019, "The interpretation and prediction of event participants in Mandarin active and passive N-N-V sentences [Dataset]", https://doi.org/10.11588/data/L7QPUY, heiDATA, V1, UNF:6:Gpy3ySsey0gDHrTBkgp1Bg== [fileUNF]
This data set contains eye tracking data collected with an SMI RED 500 eye tracking system. The experimental design, elicitation method, coding, and criteria for excluding/including data are documented in the article: Gerwien, J. (2019) "The interpretation and prediction of event...
Aug 28, 2019 - Germania
Roxburgh, Marcus; Olli, Maarja, 2019, "Eyes to the North: a multi-element analysis of copper-alloy eye brooches in the eastern Baltic, produced during the Roman Iron Age [Supplement]", https://doi.org/10.11588/data/7WOCTK, heiDATA, V1, UNF:6:EnP0e/xxKuwYHp2brVn3sw== [fileUNF]
Roman Iron Age. Their forms bear strong similarities to those found much further south in Germania and the northern Roman provinces, leading to the conclusion that they originally arrived in the region as imports, perhaps by sea from an as yet undiscovered production centre in an...
Add Data

Sign up or log in to create a dataverse or add a dataset.

Link Dataverse
Reset Modifications

Are you sure you want to reset the selected metadata fields? If you do this, any customizations (hidden, required, optional) you have done will no longer appear.

Contact heiDATA Support

heiDATA Support

Please fill this out to prove you are not a robot.

+ =
Send Message