Skip to main content
Metrics
33,049 Downloads
Featured Dataverses

In order to use this feature you must have at least one published dataverse.

Publish Dataverse

Are you sure you want to publish your dataverse? Once you do so it must remain published.

Publish Dataverse

This dataverse cannot be published because the dataverse it is in has not been published.

Delete Dataverse

Are you sure you want to delete your dataverse? You cannot undelete this dataverse.

Find Advanced Search

11 to 20 of 36 Results
Mar 26, 2020 - Empirical Linguistics and Computational Language Modeling (LiMo)
Rehbein, Ines; Ruppenhofer, Josef, 2020, "German causal language annotations and lexicon (verbs, nouns, prepositions) (DE)", https://doi.org/10.11588/data/ZHI94V, heiDATA, V1
Annotations of causal verbs, nouns and prepositions in context and lexicon file for causal verbs, nouns and prepositions.
Mar 6, 2020 - Empirical Linguistics and Computational Language Modeling (LiMo)
van den Berg, Esther, 2020, "German Twitter Titling Corpus", https://doi.org/10.11588/data/AOSUY6, heiDATA, V1, UNF:6:xIy4tRguIiz8xpg52FlxOA== [fileUNF]
The German Titling Twitter Corpus consists of 1904 stance-annotated tweets collected in June/July 2018 mentioning 24 German politicians with a doctoral degree. The Addendum contains an additional 296 stance-annotated tweets from each month of 2018 mentioning 6 left-leaning and 4...
Jan 23, 2020 - Empirical Linguistics and Computational Language Modeling (LiMo)
Daza, Angel, 2020, "Encoder-Decoder Model for Semantic Role Labeling", https://doi.org/10.11588/data/TOI9NQ, heiDATA, V1
Abstract (Daza & Frank 2019): We propose a Cross-lingual Encoder-Decoder model that simultaneously translates and generates sentences with Semantic Role Labeling annotations in a resource-poor target language. Unlike annotation projection techniques, our model does not need paral...
Dec 10, 2019 - Empirical Linguistics and Computational Language Modeling (LiMo)
Becker, Maria, 2019, "GER_SET: Situation Entity Type labelled corpus for German", https://doi.org/10.11588/data/BBQYD0, heiDATA, V1
Semantic clause types, also called Situation Entity (SE) types (Smith, 2003) are linguistic characterizations of aspectual properties shown to be useful for tasks like argumentation structure analysis (Becker et al., 2016), genre characterization (Palmer and Friedrich, 2014), and...
Oct 22, 2019 - Empirical Linguistics and Computational Language Modeling (LiMo)
Becker, Maria, 2019, "Genre-sensitive Neural Situation Entity classifier (DE, EN)", https://doi.org/10.11588/data/XXKWU0, heiDATA, V1
This is a Classifier for situation entity types as described in Becker et al., 2017. These clause types depend on a combination of syntactic-semantic and contextual features. We explore this task in a deeplearning framework, where tuned word representations capture lexical, synta...
Oct 22, 2019 - Empirical Linguistics and Computational Language Modeling (LiMo)
Becker, Maria, 2019, "COREC – A neural multi-label COmmonsense RElation Classification system", https://doi.org/10.11588/data/E5EHBV, heiDATA, V1
We examine the learnability of Commonsense knowledge relations as represented in CONCEPTNET. We develop a neural open world multi-label classification system that focuses on the evaluation of classification accuracy for individual relations. Based on an in-depth study of the spec...
Oct 8, 2019 - Empirical Linguistics and Computational Language Modeling (LiMo)
Ruppenhofer, Josef, 2019, "Affixoid Dataset (DE)", https://doi.org/10.11588/data/QKF4LT, heiDATA, V1, UNF:6:+MGK9lTPTXx7Rclu1BpPnw== [fileUNF]
The dataset contains the manual annotations for the COLING 2018 submission "Distinguishing affixoid formations from compounds" by Josef Ruppenhofer, Michael Wiegand, Rebecca Wilm and Katja Markert. 1788 complex words containing one of 7 German suffixoid candidates (e.g. -hai, -go...
Oct 7, 2019 - Empirical Linguistics and Computational Language Modeling (LiMo)
Marasović, Ana; Zhou, Mengfei; Frank, Anette, 2019, "The MSC Data Set", https://doi.org/10.11588/data/JEESIQ, heiDATA, V1
From this page you can download resources we created for modal sense classification as reported in Zhou et al. (2015), Marasović et al. (2016) and Marasović and Frank (2015) (see "Related Publication" below): Heuristically sense-annotated training data acquired from EUROPARL and...
Oct 7, 2019 - Empirical Linguistics and Computational Language Modeling (LiMo)
Marasović, Ana, 2019, "Multilingual Modal Sense Classification using a Convolutional Neural Network [Source Code]", https://doi.org/10.11588/data/ERDJDI, heiDATA, V1
Abstract Modal sense classification (MSC) is aspecial WSD task that depends on themeaning of the proposition in the modal’s scope. We explore a CNN architecture for classifying modal sense in English and German. We show that CNNs are superior to manually designed feature-based cl...
Sep 5, 2019 - Empirical Linguistics and Computational Language Modeling (LiMo)
Wiegand, Michael; Bocionek, Christine; Ruppenhofer, Josef, 2019, "Sentiment Compound Data (DE)", https://doi.org/10.11588/data/LSTRK3, heiDATA, V1
This dataset contains gold standards that are required for building a classifier that automatically extracts opinion (noun) compounds.
Add Data

Sign up or log in to create a dataverse or add a dataset.

Share Dataverse

Share this dataverse on your favorite social media networks.

Link Dataverse
Reset Modifications

Are you sure you want to reset the selected metadata fields? If you do this, any customizations (hidden, required, optional) you have done will no longer appear.

Contact heiDATA Support

heiDATA Support

Please fill this out to prove you are not a robot.

+ =