Skip to main content
Metrics
29,408 Downloads
Featured Dataverses

In order to use this feature you must have at least one published dataverse.

Publish Dataverse

Are you sure you want to publish your dataverse? Once you do so it must remain published.

Publish Dataverse

This dataverse cannot be published because the dataverse it is in has not been published.

Delete Dataverse

Are you sure you want to delete your dataverse? You cannot undelete this dataverse.

Find Advanced Search

11 to 20 of 28 Results
Oct 22, 2019 - Empirical Linguistics and Computational Language Modeling (LiMo)
Becker, Maria, 2019, "Genre-sensitive Neural Situation Entity classifier (DE, EN)", https://doi.org/10.11588/data/XXKWU0, heiDATA, V1
This is a Classifier for situation entity types as described in Becker et al., 2017. These clause types depend on a combination of syntactic-semantic and contextual features. We explore this task in a deeplearning framework, where tuned word representations capture lexical, synta...
Dec 10, 2019 - Empirical Linguistics and Computational Language Modeling (LiMo)
Becker, Maria, 2019, "GER_SET: Situation Entity Type labelled corpus for German", https://doi.org/10.11588/data/BBQYD0, heiDATA, V1
Semantic clause types, also called Situation Entity (SE) types (Smith, 2003) are linguistic characterizations of aspectual properties shown to be useful for tasks like argumentation structure analysis (Becker et al., 2016), genre characterization (Palmer and Friedrich, 2014), and...
Sep 2, 2019 - Empirical Linguistics and Computational Language Modeling (LiMo)
Wiegand, Michael, 2019, "GermEval-2018 Corpus (DE)", https://doi.org/10.11588/data/0B5VML, heiDATA, V1
This dataset comprises the training and test data (German tweets) from the GermEval 2018 Shared on Offensive Language Detection.
Jun 6, 2019 - IWR Computer Graphics
Mara, Hubert, 2019, "HeiCuBeDa Hilprecht - Heidelberg Cuneiform Benchmark Dataset for the Hilprecht Collection", https://doi.org/10.11588/data/IE8CCN, heiDATA, V1
The number of known cuneiform tablets is assumed to be in the hundreds of thousands. A fraction has been published by printing photographs and manual tracings in books, which is collected by the online Cuneiform Digital Library Initiative (CDLI) catalog including some of these im...
Aug 19, 2019 - Empirical Linguistics and Computational Language Modeling (LiMo)
Kotnis, Bhushan, 2019, "KGE Algorithms", https://doi.org/10.11588/data/CSXYSS, heiDATA, V1
An updated method for link prediction that uses a regularization factor that models relation argument types Abstract (Kotnis and Nastase, 2017): Learning relations based on evidence from knowledge repositories relies on processing the available relation instances. Knowledge repos...
Sep 2, 2019 - Empirical Linguistics and Computational Language Modeling (LiMo)
Wiegand, Michael, 2019, "Lexicon of Abusive Words (EN)", https://doi.org/10.11588/data/MKPEYV, heiDATA, V1
This goldstandard contains a bootstrapped lexicon of abusive words. The lexicon comprises a large set of English negative polar expressions annotated as either abusive or not.
Jun 13, 2020 - Statistical Natural Language Processing Group
Beilharz, Benjamin; Sun, Xin, 2019, "LibriVoxDeEn - A Corpus for German-to-English Speech Translation and Speech Recognition", https://doi.org/10.11588/data/TMEDTX, heiDATA, V2
This dataset is a corpus of sentence-aligned triples of German audio, German text, and English translation, based on German audio books. The corpus consists of over 100 hours of audio material and over 50k parallel sentences. The speech data are low in disfluencies because of the...
Medical Informatics(Heidelberg University - Medical Faculty Heidelberg)
Sep 27, 2019
Data publications from the Research group Medical Informatics at Heidelberg University's Institute of Medical Biometry and Informatics.
Oct 7, 2019 - Empirical Linguistics and Computational Language Modeling (LiMo)
Marasović, Ana, 2019, "Multilingual Modal Sense Classification using a Convolutional Neural Network [Source Code]", https://doi.org/10.11588/data/ERDJDI, heiDATA, V1
Abstract Modal sense classification (MSC) is aspecial WSD task that depends on themeaning of the proposition in the modal’s scope. We explore a CNN architecture for classifying modal sense in English and German. We show that CNNs are superior to manually designed feature-based cl...
Aug 19, 2019 - Empirical Linguistics and Computational Language Modeling (LiMo)
Kotnis, Bhushan, 2019, "Negative Sampling for Learning Knowledge Graph Embeddings", https://doi.org/10.11588/data/YYULL2, heiDATA, V1
Reimplementation of four KG factorization methods and six negative sampling methods. Abstract Knowledge graphs are large, useful, but incomplete knowledge repositories. They encode knowledge through entities and relations which define each other through the connective structure o...
Add Data

Sign up or log in to create a dataverse or add a dataset.

Share Dataverse

Share this dataverse on your favorite social media networks.

Link Dataverse
Reset Modifications

Are you sure you want to reset the selected metadata fields? If you do this, any customizations (hidden, required, optional) you have done will no longer appear.

Contact heiDATA Support

heiDATA Support

Please fill this out to prove you are not a robot.

+ =