1 to 10 of 15 Results
Nov 13, 2023 - Neural Techniques for German Dependency Parsing
Do, Bich-Ngoc; Rehbein, Ines, 2023, "Datasets for Dependency Tree Reranking", https://doi.org/10.11588/data/E5NOYH, heiDATA, V1
This resource contains the datasets for dependency tree reranking in 3 languages: English, German and Czech. The creation, analysis and experiment results of the datasets are described in the paper: Do and Rehbein (2020). "Neural Reranking for Dependency Parsing: An Evaluation". |
Nov 13, 2023 - Neural Techniques for German Dependency Parsing
Do, Bich-Ngoc; Rehbein, Ines; Frank, Anette, 2023, "Head Selection Parsers and LSTM Labelers", https://doi.org/10.11588/data/BPWWJL, heiDATA, V1
This resource contains code, data and pre-trained models for various types of neural dependency parsers and LSTM labelers used in the papers: Do et al. (2017). "What Do We Need to Know About an Unknown Word When Parsing German" Do and Rehbein (2017). "Evaluating LSTM Models for G... |
Nov 13, 2023 - Neural Techniques for German Dependency Parsing
Do, Bich-Ngoc; Rehbein, Ines, 2023, "Neural Rerankers for Dependency Parsing", https://doi.org/10.11588/data/NNGPQZ, heiDATA, V1
This resource contains code for different types of neural rerankers (RCNN, RCNN-shared and GCN) from the paper: Do and Rehbein (2020). "Neural Reranking for Dependency Parsing: An Evaluation". We also include in this resource the pre-trained models of different rerankers on 3 lan... |
Nov 13, 2023 - Neural Techniques for German Dependency Parsing
Do, Bich-Ngoc; Rehbein, Ines, 2023, "Tool for Extracting PP Attachment Disambiguation Dataset", https://doi.org/10.11588/data/RHD3KS, heiDATA, V1
This resource contains code to extract a PP attachment disambiguation dataset as described in the paper: Do and Rehbein (2020). "Parsers Know Best: German PP Attachment Revisited". The input is in CoNLL format, and the output format is similar to the one described in de Kok et al... |
Nov 13, 2023 - Neural Techniques for German Dependency Parsing
Do, Bich-Ngoc; Rehbein, Ines, 2023, "Neural PP Attachment Disambiguation Systems", https://doi.org/10.11588/data/DKWKGJ, heiDATA, V1
This resource contains code for different types of neural PP attachment disambiguation systems: A disambiguation system inspired by de Kok et al. (2017) but with the ranking loss function. A disambiguation system with biaffine attention similar to the neural dependency parser in... |
Nov 13, 2023 - Neural Techniques for German Dependency Parsing
Do, Bich-Ngoc; Rehbein, Ines, 2023, "Real-World PP Attachment Disambiguation Dataset", https://doi.org/10.11588/data/NB46XR, heiDATA, V1
This resource contains a German dataset for real-world PP attachment disambiguation. The creation, analysis and experiment results of the dataset are described in the paper: Do and Rehbein (2020). "Parsers Know Best: German PP Attachment Revisited" |
Nov 13, 2023 - Neural Techniques for German Dependency Parsing
Do, Bich-Ngoc; Rehbein, Ines, 2023, "Neural Dependency Parser with Biaffine Attention and BERT Embeddings", https://doi.org/10.11588/data/0U6IWL, heiDATA, V1
This resource contains the code of the dependency parser used in the paper: Do and Rehbein (2020). "Parsers Know Best: German PP Attachment Revisited". The parser is a re-implementation of the neural dependency parser from Dozat and Manning (2017) and is extended to use the BERT... |
Nov 13, 2023 - Neural Techniques for German Dependency Parsing
Do, Bich-Ngoc; Rehbein, Ines, 2023, "Topological Field Labeler for German", https://doi.org/10.11588/data/YYNQFF, heiDATA, V1
This resource contains the code of the topological labeler used in the paper: Do and Rehbein (2020). "Parsers Know Best: German PP Attachment Revisited". For this tool, labeling topological field is formulated as a sequence labeling task. We also include in this resource two pre-... |
Mar 26, 2020 - Empirical Linguistics and Computational Language Modeling (LiMo)
Rehbein, Ines; Ruppenhofer, Josef; Do, Bich-Ngoc, 2020, "tweeDe", https://doi.org/10.11588/data/S90S35, heiDATA, V1
A German UD Twitter treebank, with >12,000 tokens from 519 tweets, annotated in the Universal Dependencies framework |
Mar 26, 2020 - Empirical Linguistics and Computational Language Modeling (LiMo)
Rehbein, Ines; Ruppenhofer, Josef; Zimmermann, Victor, 2020, "Pre-trained POS tagging models for German social media", https://doi.org/10.11588/data/W3JBV4, heiDATA, V1
Pre-trained POS tagging models for the HunPos tagger (Halácsy et al. 2007) the biLSTM-char-CRF tagger (Reimers & Gurevych 2017) Online-Flors (Yin et al. 2015). References: Halácsy, P., Kornai, A., and Oravecz, C. (2007). HunPos: An open source trigram tagger. In Proceedings of th... |