Skip to main content
Empirical Linguistics and Computational Language Modeling (LiMo) (Department of Computational Linguistics of Heidelberg University and Leibniz Institute for the German Language)

Data publications of the Leibniz ScienceCampus “Empirical Linguistics and Computational Language Modeling”

The Leibniz ScienceCampus “Empirical Linguistics and Computational Language Modeling” (LiMo) is a cooperative research project between the Leibniz Institute for the German Language (Leibniz-Institut für Deutsche Sprache, IDS) in Mannheim and the Department of Computational Linguistics at Heidelberg University (ICL). The general aims of the project are to develop new methods, models, and tools for compiling and analysing automatically large German textual corpora covering different domains, genres and language varieties.

The project is supported by funds from the Baden-Württemberg Ministry of Science, Research and the Arts and the Leibniz Association together with funds provided by the Leibniz Institute for the German Language and Heidelberg University.

Funding Period: 2015 – 2020

Featured Dataverses

In order to use this feature you must have at least one published dataverse.

Publish Dataverse

Are you sure you want to publish your dataverse? Once you do so it must remain published.

Publish Dataverse

This dataverse cannot be published because the dataverse it is in has not been published.

Delete Dataverse

Are you sure you want to delete your dataverse? You cannot undelete this dataverse.

Find Advanced Search

1 to 10 of 58 Results
Jan 23, 2020
Daza, Angel, 2020, "Encoder-Decoder Model for Semantic Role Labeling", https://doi.org/10.11588/data/TOI9NQ, heiDATA, V1
Abstract (Daza & Frank 2019): We propose a Cross-lingual Encoder-Decoder model that simultaneously translates and generates sentences with Semantic Role Labeling annotations in a resource-poor target language. Unlike annotation projection techniques, our model does not need paral...
Markdown Text - 8.4 KB - MD5: 835ab4a78a83f8bea4d55dd6caa51837
Documentation
ZIP Archive - 42.5 MB - MD5: 5a525ee5066a01138845a1276c110956
Code
Dec 10, 2019
Becker, Maria, 2019, "GER_SET: Situation Entity Type labelled corpus for German", https://doi.org/10.11588/data/BBQYD0, heiDATA, V1
Semantic clause types, also called Situation Entity (SE) types (Smith, 2003) are linguistic characterizations of aspectual properties shown to be useful for tasks like argumentation structure analysis (Becker et al., 2016), genre characterization (Palmer and Friedrich, 2014), and...
ZIP Archive - 414.5 KB - MD5: e1733e5ce7ef02577239d5a9ada0d8ba
Oct 22, 2019
Becker, Maria, 2019, "Genre-sensitive Neural Situation Entity classifier (DE, EN)", https://doi.org/10.11588/data/XXKWU0, heiDATA, V1
This is a Classifier for situation entity types as described in Becker et al., 2017. These clause types depend on a combination of syntactic-semantic and contextual features. We explore this task in a deeplearning framework, where tuned word representations capture lexical, synta...
ZIP Archive - 12.5 KB - MD5: 41d44420c6d5ea602e15e4140022af0f
Code
Oct 22, 2019
Becker, Maria, 2019, "COREC – A neural multi-label COmmonsense RElation Classification system", https://doi.org/10.11588/data/E5EHBV, heiDATA, V1
We examine the learnability of Commonsense knowledge relations as represented in CONCEPTNET. We develop a neural open world multi-label classification system that focuses on the evaluation of classification accuracy for individual relations. Based on an in-depth study of the spec...
ZIP Archive - 6.2 KB - MD5: 04927f554601f39dd7e2d86a5e62d681
Code
Oct 8, 2019
Ruppenhofer, Josef, 2019, "Affixoid Dataset (DE)", https://doi.org/10.11588/data/QKF4LT, heiDATA, V1, UNF:6:+MGK9lTPTXx7Rclu1BpPnw== [fileUNF]
The dataset contains the manual annotations for the COLING 2018 submission "Distinguishing affixoid formations from compounds" by Josef Ruppenhofer, Michael Wiegand, Rebecca Wilm and Katja Markert. 1788 complex words containing one of 7 German suffixoid candidates (e.g. -hai, -go...
Add Data

Sign up or log in to create a dataverse or add a dataset.

Share Dataverse

Share this dataverse on your favorite social media networks.

Link Dataverse
Reset Modifications

Are you sure you want to reset the selected metadata fields? If you do this, any customizations (hidden, required, optional) you have done will no longer appear.

Contact heiDATA Support

heiDATA Support

Please fill this out to prove you are not a robot.

+ =