Skip to main content
Empirical Linguistics and Computational Language Modeling (LiMo) (Department of Computational Linguistics of Heidelberg University and Leibniz Institute for the German Language)

Data publications of the Leibniz ScienceCampus “Empirical Linguistics and Computational Language Modeling”

The Leibniz ScienceCampus “Empirical Linguistics and Computational Language Modeling” (LiMo) is a cooperative research project between the Leibniz Institute for the German Language (Leibniz-Institut für Deutsche Sprache, IDS) in Mannheim and the Department of Computational Linguistics at Heidelberg University (ICL). The general aims of the project are to develop new methods, models, and tools for compiling and analysing automatically large German textual corpora covering different domains, genres and language varieties.

The project is supported by funds from the Baden-Württemberg Ministry of Science, Research and the Arts and the Leibniz Association together with funds provided by the Leibniz Institute for the German Language and Heidelberg University.

Funding Period: 2015 – 2020

Featured Dataverses

In order to use this feature you must have at least one published dataverse.

Publish Dataverse

Are you sure you want to publish your dataverse? Once you do so it must remain published.

Publish Dataverse

This dataverse cannot be published because the dataverse it is in has not been published.

Delete Dataverse

Are you sure you want to delete your dataverse? You cannot undelete this dataverse.

Find Advanced Search

1 to 10 of 27 Results
Mar 26, 2020
Rehbein, Ines; Ruppenhofer, Josef; Do, Bich-Ngoc, 2020, "tweeDe", https://doi.org/10.11588/data/S90S35, heiDATA, V1
A German UD Twitter treebank, with >12,000 tokens from 519 tweets, annotated in the Universal Dependencies framework
Mar 26, 2020
Rehbein, Ines; Ruppenhofer, Josef; Zimmermann, Victor, 2020, "Pre-trained POS tagging models for German social media", https://doi.org/10.11588/data/W3JBV4, heiDATA, V1
Pre-trained POS tagging models for the HunPos tagger (Halácsy et al. 2007) the biLSTM-char-CRF tagger (Reimers & Gurevych 2017) Online-Flors (Yin et al. 2015). References: Halácsy, P., Kornai, A., and Oravecz, C. (2007). HunPos: An open source trigram tagger. In Proceedings of th...
Mar 26, 2020
Rehbein, Ines; Ruppenhofer, Josef; Zimmermann, Victor, 2020, "A harmonised testsuite for social media POS tagging (DE)", https://doi.org/10.11588/data/KXLMHN, heiDATA, V1
A harmonised POS testsuite of web data, CMC and Twitter microtext, with word forms and STTS pos tags (+ some additional CMC-specific tags). UD pos tags have been automatically converted, based on the STTS pos tags. The data does not contain (manually corrected) lemma information....
Mar 26, 2020
Rehbein, Ines; Steen, Julius; Do, Bich-Ngoc; Frank, Anette, 2020, "Converter for content-to-head style syntactic dependencies", https://doi.org/10.11588/data/HE3BAZ, heiDATA, V1
A set of Python scripts that convert function-head style encodings in dependency treebanks in a content-head style encoding (as used in the UD treebanks) and vice versa (for adpositions, copula and coordination). For more information, see (Rehbein, Steen, Do & Frank 2017).
Mar 26, 2020
Rehbein, Ines; Ruppenhofer, Josef, 2020, "MACE-AL-TREE", https://doi.org/10.11588/data/THPEBR, heiDATA, V1
An method for detecting noise in automatically annotated dependency parse trees, combining MACE (Hovy et al. 2013) with Active Learning.
Mar 26, 2020
Rehbein, Ines; Ruppenhofer, Josef; Steen, Julius, 2020, "MACE-AL", https://doi.org/10.11588/data/C2OQN4, heiDATA, V1
A method for detecting noise in automatically annotated sequence-labelled data, combining MACE (Hovy et al. 2013) with Active Learning.
Mar 26, 2020
Rehbein, Ines; Ruppenhofer, Josef, 2020, "German causal language annotations and lexicon (verbs, nouns, prepositions) (DE)", https://doi.org/10.11588/data/ZHI94V, heiDATA, V1
Annotations of causal verbs, nouns and prepositions in context and lexicon file for causal verbs, nouns and prepositions.
Mar 6, 2020
van den Berg, Esther; Korfhage, Katharina; Ruppenhofer, Josef; Wiegand, Michael; Markert, Katja, 2020, "German Twitter Titling Corpus", https://doi.org/10.11588/data/AOSUY6, heiDATA, V1, UNF:6:xIy4tRguIiz8xpg52FlxOA== [fileUNF]
The German Titling Twitter Corpus consists of 1904 stance-annotated tweets collected in June/July 2018 mentioning 24 German politicians with a doctoral degree. The Addendum contains an additional 296 stance-annotated tweets from each month of 2018 mentioning 6 left-leaning and 4...
Jan 23, 2020
Daza, Angel, 2020, "Encoder-Decoder Model for Semantic Role Labeling", https://doi.org/10.11588/data/TOI9NQ, heiDATA, V1
Abstract (Daza & Frank 2019): We propose a Cross-lingual Encoder-Decoder model that simultaneously translates and generates sentences with Semantic Role Labeling annotations in a resource-poor target language. Unlike annotation projection techniques, our model does not need paral...
Dec 10, 2019
Becker, Maria, 2019, "GER_SET: Situation Entity Type labelled corpus for German", https://doi.org/10.11588/data/BBQYD0, heiDATA, V1
Semantic clause types, also called Situation Entity (SE) types (Smith, 2003) are linguistic characterizations of aspectual properties shown to be useful for tasks like argumentation structure analysis (Becker et al., 2016), genre characterization (Palmer and Friedrich, 2014), and...
Add Data

Sign up or log in to create a dataverse or add a dataset.

Share Dataverse

Share this dataverse on your favorite social media networks.

Link Dataverse
Reset Modifications

Are you sure you want to reset the selected metadata fields? If you do this, any customizations (hidden, required, optional) you have done will no longer appear.

Contact heiDATA Support

heiDATA Support

Please fill this out to prove you are not a robot.

+ =