Skip to main content
Empirical Linguistics and Computational Language Modeling (LiMo) (Department of Computational Linguistics of Heidelberg University and Leibniz Institute for the German Language)
Featured Dataverses

In order to use this feature you must have at least one published dataverse.

Publish Dataverse

Are you sure you want to publish your dataverse? Once you do so it must remain published.

Publish Dataverse

This dataverse cannot be published because the dataverse it is in has not been published.

Delete Dataverse

Are you sure you want to delete your dataverse? You cannot undelete this dataverse.

Find Advanced Search

1 to 10 of 55 Results
Dec 10, 2019
Becker, Maria, 2019, "GER_SET: Situation Entity Type labelled corpus for German", https://doi.org/10.11588/data/BBQYD0, heiDATA, V1
Semantic clause types, also called Situation Entity (SE) types (Smith, 2003) are linguistic characterizations of aspectual properties shown to be useful for tasks like argumentation structure analysis (Becker et al., 2016), genre characterization (Palmer and Friedrich, 2014), and...
ZIP Archive - 414.5 KB - MD5: e1733e5ce7ef02577239d5a9ada0d8ba
Oct 22, 2019
Becker, Maria, 2019, "Genre-sensitive Neural Situation Entity classifier (DE, EN)", https://doi.org/10.11588/data/XXKWU0, heiDATA, V1
This is a Classifier for situation entity types as described in Becker et al., 2017. These clause types depend on a combination of syntactic-semantic and contextual features. We explore this task in a deeplearning framework, where tuned word representations capture lexical, synta...
ZIP Archive - 12.5 KB - MD5: 41d44420c6d5ea602e15e4140022af0f
Code
Oct 22, 2019
Becker, Maria, 2019, "COREC – A neural multi-label COmmonsense RElation Classification system", https://doi.org/10.11588/data/E5EHBV, heiDATA, V1
We examine the learnability of Commonsense knowledge relations as represented in CONCEPTNET. We develop a neural open world multi-label classification system that focuses on the evaluation of classification accuracy for individual relations. Based on an in-depth study of the spec...
ZIP Archive - 6.2 KB - MD5: 04927f554601f39dd7e2d86a5e62d681
Code
Oct 8, 2019
Ruppenhofer, Josef, 2019, "Affixoid Dataset (DE)", https://doi.org/10.11588/data/QKF4LT, heiDATA, V1, UNF:6:+MGK9lTPTXx7Rclu1BpPnw== [fileUNF]
The dataset contains the manual annotations for the COLING 2018 submission "Distinguishing affixoid formations from compounds" by Josef Ruppenhofer, Michael Wiegand, Rebecca Wilm and Katja Markert. 1788 complex words containing one of 7 German suffixoid candidates (e.g. -hai, -go...
Oct 8, 2019 - Affixoid Dataset (DE)
Tab-Delimited - 61.6 KB - MD5: 8e2e107227a8ab7d59fb9a48dfa9f475
Data
Oct 8, 2019 - Affixoid Dataset (DE)
Plain Text - 758 B - MD5: 017f60a9c77782cd97a45c4dd74e117c
Documentation
Oct 7, 2019
Marasović, Ana; Zhou, Mengfei; Frank, Anette, 2019, "The MSC Data Set", https://doi.org/10.11588/data/JEESIQ, heiDATA, V1
From this page you can download resources we created for modal sense classification as reported in Zhou et al. (2015), Marasović et al. (2016) and Marasović and Frank (2015) (see "Related Publication" below): Heuristically sense-annotated training data acquired from EUROPARL and...
Add Data

Sign up or log in to create a dataverse or add a dataset.

Share Dataverse

Share this dataverse on your favorite social media networks.

Link Dataverse
Reset Modifications

Are you sure you want to reset the selected metadata fields? If you do this, any customizations (hidden, required, optional) you have done will no longer appear.

Contact heiDATA Support

heiDATA Support

Please fill this out to prove you are not a robot.

+ =