1 to 10 of 127 Results
Jan 13, 2021
Anders, Katharina; Winiwarter, Lukas; Mara, Hubert; Lindenbergh, Roderik; Vos, Sander E.; Höfle, Bernhard, 2021, "Fully Automatic Spatiotemporal Segmentation of 3D LiDAR Time Series for the Extraction of Natural Surface Changes [Source Code, Validation Material and Validation Results]", https://doi.org/10.11588/data/4HJHAA, heiDATA, V1
This dataset comprises the source code to perform fully automatic spatiotemporal segmentation in time series of topographic surface change data (Python scripts). Further provided is the validation material of the resulting extraction of 4D objects-by-change at the study site of a... |
ZIP Archive - 32.9 KB - MD5: e70398ca0e02a06ce70567fb9fcf15e9
|
ZIP Archive - 6.0 GB - MD5: 9e2891179c4e7dcbcdcb75719676cf84
|
ZIP Archive - 1.1 KB - MD5: 4487e9753808165b4f0f6b0630a56225
|
Dec 15, 2020
Ludwig, Christina; Hecht, Robert; Lautenbach, Sven; Schorcht, Martin; Zipf, Alexander, 2020, "Mapping Public Urban Green Spaces based on OpenStreetMap and Sentinel-2 imagery using Belief Functions: Data and Source Code", https://doi.org/10.11588/data/UYSAA5, heiDATA, V1, UNF:6:+pceldpLQoaQQqPk4/t1VQ== [fileUNF]
Public urban green spaces are important for the urban quality of life. Still, comprehensive open data sets on urban green spaces are not available for most cities. As open and globally available data sets the potential of Sentinel-2 satellite imagery and OpenStreetMap (OSM) data... |
Dec 15, 2020 -
Mapping Public Urban Green Spaces based on OpenStreetMap and Sentinel-2 imagery using Belief Functions: Data and Source Code
Jupyter Notebook - 184.8 KB - MD5: 99f2ba63e6a7dde837fdec4976df4dad
|
Dec 15, 2020 -
Mapping Public Urban Green Spaces based on OpenStreetMap and Sentinel-2 imagery using Belief Functions: Data and Source Code
Jupyter Notebook - 404.1 KB - MD5: 0a2cf024c3da9737f016a427c1523c29
|
Dec 15, 2020 -
Mapping Public Urban Green Spaces based on OpenStreetMap and Sentinel-2 imagery using Belief Functions: Data and Source Code
Jupyter Notebook - 712.0 KB - MD5: 1d6de57d17c8bf61e872a21031e455cd
|
Dec 15, 2020 -
Mapping Public Urban Green Spaces based on OpenStreetMap and Sentinel-2 imagery using Belief Functions: Data and Source Code
Jupyter Notebook - 921.4 KB - MD5: c96cff3181dd05797f2104b4afb6877f
|
Dec 15, 2020 -
Mapping Public Urban Green Spaces based on OpenStreetMap and Sentinel-2 imagery using Belief Functions: Data and Source Code
Adobe PDF - 14.8 KB - MD5: a9c8d1829dc139b55828beae21b44f98
|