Data publications of the Leibniz ScienceCampus “Empirical Linguistics and Computational Language Modeling”

The Leibniz ScienceCampus “Empirical Linguistics and Computational Language Modeling” (LiMo) is a cooperative research project between the Leibniz Institute for the German Language (Leibniz-Institut für Deutsche Sprache, IDS) in Mannheim and the Department of Computational Linguistics at Heidelberg University (ICL). The general aims of the project are to develop new methods, models, and tools for compiling and analysing automatically large German textual corpora covering different domains, genres and language varieties.

The project is supported by funds from the Baden-Württemberg Ministry of Science, Research and the Arts and the Leibniz Association together with funds provided by the Leibniz Institute for the German Language and Heidelberg University.

Funding Period: 2015 – 2020

Featured Dataverses

In order to use this feature you must have at least one published or linked dataverse.

Publish Dataverse

Are you sure you want to publish your dataverse? Once you do so it must remain published.

Publish Dataverse

This dataverse cannot be published because the dataverse it is in has not been published.

Delete Dataverse

Are you sure you want to delete your dataverse? You cannot undelete this dataverse.

Advanced Search

1 to 10 of 38 Results
Nov 13, 2023 - Neural Techniques for German Dependency Parsing
Fankhauser, Peter; Do, Bich-Ngoc; Kupietz, Marc, 2023, "Neural Dependency Parser with Biaffine Attention", https://doi.org/10.11588/data/DZ9MUS, heiDATA, V1
This resource contains the code of the dependency parser used in the paper: Fankhauser, et al. (2020). "Evaluating a Dependency Parser on DeReKo". The parser is a re-implementation of the neural dependency parser from Dozat and Manning (2017). In addition, we include two pre-trai...
Nov 13, 2023 - Neural Techniques for German Dependency Parsing
Do, Bich-Ngoc; Rehbein, Ines, 2023, "Datasets for Dependency Tree Reranking", https://doi.org/10.11588/data/E5NOYH, heiDATA, V1
This resource contains the datasets for dependency tree reranking in 3 languages: English, German and Czech. The creation, analysis and experiment results of the datasets are described in the paper: Do and Rehbein (2020). "Neural Reranking for Dependency Parsing: An Evaluation".
Nov 13, 2023 - Neural Techniques for German Dependency Parsing
Do, Bich-Ngoc; Rehbein, Ines; Frank, Anette, 2023, "Head Selection Parsers and LSTM Labelers", https://doi.org/10.11588/data/BPWWJL, heiDATA, V1
This resource contains code, data and pre-trained models for various types of neural dependency parsers and LSTM labelers used in the papers: Do et al. (2017). "What Do We Need to Know About an Unknown Word When Parsing German" Do and Rehbein (2017). "Evaluating LSTM Models for G...
Nov 13, 2023 - Neural Techniques for German Dependency Parsing
Do, Bich-Ngoc; Rehbein, Ines, 2023, "Neural Rerankers for Dependency Parsing", https://doi.org/10.11588/data/NNGPQZ, heiDATA, V1
This resource contains code for different types of neural rerankers (RCNN, RCNN-shared and GCN) from the paper: Do and Rehbein (2020). "Neural Reranking for Dependency Parsing: An Evaluation". We also include in this resource the pre-trained models of different rerankers on 3 lan...
Nov 13, 2023 - Neural Techniques for German Dependency Parsing
Do, Bich-Ngoc; Rehbein, Ines, 2023, "Tool for Extracting PP Attachment Disambiguation Dataset", https://doi.org/10.11588/data/RHD3KS, heiDATA, V1
This resource contains code to extract a PP attachment disambiguation dataset as described in the paper: Do and Rehbein (2020). "Parsers Know Best: German PP Attachment Revisited". The input is in CoNLL format, and the output format is similar to the one described in de Kok et al...
Nov 13, 2023 - Neural Techniques for German Dependency Parsing
Do, Bich-Ngoc; Rehbein, Ines, 2023, "Neural PP Attachment Disambiguation Systems", https://doi.org/10.11588/data/DKWKGJ, heiDATA, V1
This resource contains code for different types of neural PP attachment disambiguation systems: A disambiguation system inspired by de Kok et al. (2017) but with the ranking loss function. A disambiguation system with biaffine attention similar to the neural dependency parser in...
Nov 13, 2023 - Neural Techniques for German Dependency Parsing
Do, Bich-Ngoc; Rehbein, Ines, 2023, "Real-World PP Attachment Disambiguation Dataset", https://doi.org/10.11588/data/NB46XR, heiDATA, V1
This resource contains a German dataset for real-world PP attachment disambiguation. The creation, analysis and experiment results of the dataset are described in the paper: Do and Rehbein (2020). "Parsers Know Best: German PP Attachment Revisited"
Nov 13, 2023 - Neural Techniques for German Dependency Parsing
Do, Bich-Ngoc; Rehbein, Ines, 2023, "Neural Dependency Parser with Biaffine Attention and BERT Embeddings", https://doi.org/10.11588/data/0U6IWL, heiDATA, V1
This resource contains the code of the dependency parser used in the paper: Do and Rehbein (2020). "Parsers Know Best: German PP Attachment Revisited". The parser is a re-implementation of the neural dependency parser from Dozat and Manning (2017) and is extended to use the BERT...
Nov 13, 2023 - Neural Techniques for German Dependency Parsing
Do, Bich-Ngoc; Rehbein, Ines, 2023, "Topological Field Labeler for German", https://doi.org/10.11588/data/YYNQFF, heiDATA, V1
This resource contains the code of the topological labeler used in the paper: Do and Rehbein (2020). "Parsers Know Best: German PP Attachment Revisited". For this tool, labeling topological field is formulated as a sequence labeling task. We also include in this resource two pre-...
Nov 13, 2023
Research Data to the PhD Projects of Ngoc Do.
Add Data

Sign up or log in to create a dataverse or add a dataset.

Share Dataverse

Share this dataverse on your favorite social media networks.

Link Dataverse
Reset Modifications

Are you sure you want to reset the selected metadata fields? If you do this, any customizations (hidden, required, optional) you have done will no longer appear.