Twitter Titling Corpus (doi:10.11588/data/IOHXDF)

View:

Part 1: Document Description
Part 2: Study Description
Part 3: Data Files Description
Part 4: Variable Description
Entire Codebook

(external link)

Document Description

Citation

Title:

Twitter Titling Corpus

Identification Number:

doi:10.11588/data/IOHXDF

Distributor:

heiDATA

Date of Distribution:

2019-08-23

Version:

1

Bibliographic Citation:

van den Berg, Esther; Korfhage, Katharina; Ruppenhofer, Josef; Wiegand, Michael; Markert, Katja, 2019, "Twitter Titling Corpus", https://doi.org/10.11588/data/IOHXDF, heiDATA, V1, UNF:6:+F3lLKziwMvjy+xyktkilw== [fileUNF]

Study Description

Citation

Title:

Twitter Titling Corpus

Identification Number:

doi:10.11588/data/IOHXDF

Authoring Entity:

van den Berg, Esther (Leibniz Institute for the German Language / Department of Computational Linguistics, Heidelberg University)

Korfhage, Katharina (Department of Computational Linguistics, Heidelberg University)

Ruppenhofer, Josef (Leibniz Institute for the German Language)

Wiegand, Michael (Leibniz Institute for the German Language)

Markert, Katja (Department of Computational Linguistics, Heidelberg University)

Date of Production:

2019

Distributor:

heiDATA

Access Authority:

van den Berg, Esther

Holdings Information:

https://doi.org/10.11588/data/IOHXDF

Study Scope

Keywords:

Arts and Humanities, Computer and Information Science, sentiment, entity framing, twitter corpus, annotated tweets, political discourse, computational social science, social media

Topic Classification:

sentiment, entity framing

Abstract:

<p>The Twitter Titling Corpus contains 4002 stance-annotated tweets collected between 20 June 2017 and 30 August 2017 mentioning 6 presidents. Each tweet is annotated for the naming form used to refer to the president, for the purpose of a study on the relation between naming variation and stance (cited below).</p> <p>This data is to be used for research purposes only.</p> <p><strong>Columns</strong></p> <ul> <li><strong>tweet_id</strong>: id of the tweet</li> <li><strong>president</strong>: person entity mentioned in the tweet who was president at the time of collection</li> <li><strong>country</strong>: country the president was president of at the time of collection</li> <li><strong>stance</strong>: positive, neutral or negative sentiment towards the president</li> <li><strong>naming form</strong>: form used to refer to president out of <ul> <li><em>first-name</em> (FN)</li> <li><em>last-name</em> (LN)</li> <li><em>first-name last-name</em> (FNLN)</li> <li><em>title last-name</em> (TLN)</li> <li><em>title first-name last-name</em> (TFNLN)</li> </ul> </li> </ul>

Kind of Data:

textual data, CSV text file format

Methodology and Processing

Sources Statement

Data Access

Other Study Description Materials

Related Publications

Citation

Title:

<p>Esther van den Berg, Katharina Korfhage, Josef Ruppenhofer, Michael Wiegand and Katja Markert (2019). Not My President: How Names and Titles Frame Political Figures. In <em>Proceedings of the Third Workshop on Natural Language Processing and Computational Social Science</em>, pages 1&ndash;6, June 6, 2019, Minneapolis, Minnesota. </p>

Identification Number:

https://www.aclweb.org/anthology/W19-2101

Bibliographic Citation:

<p>Esther van den Berg, Katharina Korfhage, Josef Ruppenhofer, Michael Wiegand and Katja Markert (2019). Not My President: How Names and Titles Frame Political Figures. In <em>Proceedings of the Third Workshop on Natural Language Processing and Computational Social Science</em>, pages 1&ndash;6, June 6, 2019, Minneapolis, Minnesota. </p>

File Description--f2992

File: twitter_titling_corpus.tab

  • Number of cases: 4002

  • No. of variables per record: 5

  • Type of File: text/tab-separated-values

Notes:

UNF:6:+F3lLKziwMvjy+xyktkilw==

Variable Description

List of Variables:

Variables

tweet_id

f2992 Location:

Summary Statistics: Max. 9.0897260490764698E17; Valid 4002.0; StDev 6.106012454735068E15; Mean 8.9118533562741018E17; Min. 8.7638402216279245E17

Variable Format: numeric

Notes: UNF:6:an8VxuVKpcfx/rHjAomG1A==

president

f2992 Location:

Variable Format: character

Notes: UNF:6:lZVz3D4rEUxxoJUntTXp5w==

country

f2992 Location:

Variable Format: character

Notes: UNF:6:DLsyd05I+3WEHmm5/LCbeg==

stance

f2992 Location:

Summary Statistics: Min. -1.0; Max. 1.0; StDev 0.8092706848478298; Valid 4002.0; Mean -0.3325837081459241

Variable Format: numeric

Notes: UNF:6:ME0yoCN1YdPdIqdjB64yJA==

naming_form

f2992 Location:

Variable Format: character

Notes: UNF:6:pU8g9YS+6B+4skb1CBpRDA==