Classification of Types of Changes in Gully Environments Using Time Series Forest Algorithm [data] (doi:10.11588/data/NSMM6P)

View:

Part 1: Document Description
Part 2: Study Description
Part 3: Data Files Description
Part 4: Variable Description
Part 5: Other Study-Related Materials
Entire Codebook

(external link)

Document Description

Citation

Title:

Classification of Types of Changes in Gully Environments Using Time Series Forest Algorithm [data]

Identification Number:

doi:10.11588/data/NSMM6P

Distributor:

heiDATA

Date of Distribution:

2023-07-24

Version:

2

Bibliographic Citation:

Vallejo Orti, Miguel; Castillo, Carlos; Zahs, Vivien; Bubenzer, Olaf; Höfle, Bernhard, 2023, "Classification of Types of Changes in Gully Environments Using Time Series Forest Algorithm [data]", https://doi.org/10.11588/data/NSMM6P, heiDATA, V2, UNF:6:KVUhApCn+Ker99oncknXzA== [fileUNF]

Study Description

Citation

Title:

Classification of Types of Changes in Gully Environments Using Time Series Forest Algorithm [data]

Identification Number:

doi:10.11588/data/NSMM6P

Authoring Entity:

Vallejo Orti, Miguel (Institute of Geography, Heidelberg University, Germany)

Castillo, Carlos (Department of Rural Engineering, Civil Constructions and Engineering Projects, University of Córdoba)

Zahs, Vivien (3D Geospatial Data Processing Group, Institute of Geography, Heidelberg University, Germany)

Bubenzer, Olaf (Institute of Geography, Heidelberg University, Germany)

Höfle, Bernhard (3D Geospatial Data Processing Group, Institute of Geography, Heidelberg University, Germany)

Distributor:

heiDATA

Access Authority:

Vallejo Orti, Miguel

Holdings Information:

https://doi.org/10.11588/data/NSMM6P

Study Scope

Keywords:

Earth and Environmental Sciences, Gully change, time series, SAR, Sentinel 1

Abstract:

This code implements the TimeSeriesForest algorithm to classify different types of changes in gully environments. i)gully topographical change, ii)no change outside gully, iii) no change inside gully, and iv) non-topographical change. The algorithm is specifically designed for time series classification tasks, where the input data represents the characteristics of gullies over time. The code follows a series of steps to prepare the data, train the classifier, calculate performance metrics, and generate predictions. The data preparation phase involves importing training and testing data from CSV files. The training data is then divided into classes based on their labels, and a subset of the top rows is selected for each class to create a balanced training dataset. Time series data and corresponding labels are extracted from the training data, while only the time series data is extracted from the testing data. Next, the code calculates various performance metrics to evaluate the trained classifier. It splits the training data into training and testing sets, initializes the TimeSeriesForest classifier, and trains it using the training set. The accuracy of the classifier is calculated on the testing set, and feature importances are determined. Predictions are generated for both the testing set and new data using the trained classifier. The code then computes a confusion matrix to analyze the classification results, visualizing it using Seaborn and Matplotlib. Performance metrics such as True Accuracy, Kappa, Producer's Accuracy, and User's Accuracy are calculated and printed to assess the classifier's effectiveness in classifying gully changes. Lastly, the code performs ensemble predictions by combining the testing data with the generated predictions. The results, including predictions and associated probabilities, are saved to an output file. Overall, this code provides a practical implementation of the TimeSeriesForest algorithm for classifying types of changes in gully environments, demonstrating its potential for environmental monitoring and management.

Methodology and Processing

Sources Statement

Data Access

Other Study Description Materials

Related Publications

Citation

Title:

Vallejo Orti, M., Castillo, C., Zahs, V., Bubenzer, O. & Höfle, B. (2024): Classifying types of gully changes with unoccupied aircraft vehicles 3D multitemporal point clouds for training of satellite data analysis in Northwest Namibia. Earth Surface Processes and Landforms. Vol. Early View, pp. 1-21.

Identification Number:

10.1002/esp.5759

Bibliographic Citation:

Vallejo Orti, M., Castillo, C., Zahs, V., Bubenzer, O. & Höfle, B. (2024): Classifying types of gully changes with unoccupied aircraft vehicles 3D multitemporal point clouds for training of satellite data analysis in Northwest Namibia. Earth Surface Processes and Landforms. Vol. Early View, pp. 1-21.

File Description--f12484

File: Prediction_VH_Kunene-2.tab

  • Number of cases: 12422

  • No. of variables per record: 55

  • Type of File: text/tab-separated-values

Notes:

UNF:6:KVUhApCn+Ker99oncknXzA==

Variable Description

List of Variables:

Variables

X

f12484 Location:

Summary Statistics: StDev 257.0814221539366; Max. 377491.6457; Min. 376431.6457; Mean 376926.82683025283; Valid 12422.0

Variable Format: numeric

Notes: UNF:6:6i6j2+dfEjPtVjRUM8lOVw==

Y

f12484 Location:

Summary Statistics: Mean 7988947.6719433265; Min. 7987707.04; StDev 735.4301425049547; Valid 12422.0; Max. 7990347.04

Variable Format: numeric

Notes: UNF:6:XOQ3u864+sESXjizRGlqwQ==

Predictions

f12484 Location:

Summary Statistics: Max. 1.0; Min. 0.25; Mean 0.6106595153759449; Valid 12422.0; StDev 0.23547111084797495

Variable Format: numeric

Notes: UNF:6:wWEJKpu9iARb/2Fg5NSuug==

Predictions2

f12484 Location:

Variable Format: character

Notes: UNF:6:HIVA+UKOgGLOHUev3Jm2WA==

20190707

f12484 Location:

Summary Statistics: Min. 0.001247706; Mean 0.010714151917243602; StDev 0.0074336913097622715; Max. 0.070302314; Valid 12422.0

Variable Format: numeric

Notes: UNF:6:dKovhvJcoYL6TLPkJynrLw==

20190719

f12484 Location:

Summary Statistics: Max. 0.074803305; Valid 12422.0; Mean 0.010794625256238935; StDev 0.007437589814294935; Min. 0.001172006;

Variable Format: numeric

Notes: UNF:6:hyHmk18WNmuAwy5ZdgamqQ==

20190731

f12484 Location:

Summary Statistics: Valid 12422.0; Min. 0.001334117; StDev 0.007570218008591655; Max. 0.079330642; Mean 0.010787936722347452

Variable Format: numeric

Notes: UNF:6:VXt7qRAXIbVH95Rh1uRtoA==

20190812

f12484 Location:

Summary Statistics: Min. 0.001063774; StDev 0.007505309490176519; Valid 12422.0; Max. 0.077866973; Mean 0.011062820771051363

Variable Format: numeric

Notes: UNF:6:34G8dgdyNG9Stl9Y+ydMOw==

20190905

f12484 Location:

Summary Statistics: Mean 0.011846274694976653; Valid 12422.0; StDev 0.00844324244185594; Min. 0.001029943; Max. 0.086299033

Variable Format: numeric

Notes: UNF:6:n1E+Ic/act95Uj6uQHc4BQ==

20190917

f12484 Location:

Summary Statistics: Max. 0.074225323; StDev 0.007856379121304956; Valid 12422.0; Min. 0.001491126; Mean 0.01137166848309451

Variable Format: numeric

Notes: UNF:6:u4msAoewGIFUzcNGKWJoOQ==

20190929

f12484 Location:

Summary Statistics: Valid 12422.0; StDev 0.008152654356125204; Mean 0.011702363583883428; Min. 0.001284168; Max. 0.096952108

Variable Format: numeric

Notes: UNF:6:I4sPrKp+RpBmft4hQ8IDMw==

20191011

f12484 Location:

Summary Statistics: Max. 0.075710522; Valid 12422.0; StDev 0.008360765435721123; Mean 0.01187562698510707; Min. 0.001334837

Variable Format: numeric

Notes: UNF:6:6O8TS9dQtkndPqnbW2Iusw==

20191023

f12484 Location:

Summary Statistics: Mean 0.011560364159072611; Min. 7.93903E-4; StDev 0.008188808485027664; Max. 0.084515562; Valid 12422.0

Variable Format: numeric

Notes: UNF:6:BMtwdFPL387Ah5bPLwig4A==

20191104

f12484 Location:

Summary Statistics: Min. 0.001217736; Mean 0.013883580434310096; Valid 12422.0; StDev 0.009327925723583952; Max. 0.087832522;

Variable Format: numeric

Notes: UNF:6:NwHn6awZ+ZfmQhih9xxxuQ==

20191116

f12484 Location:

Summary Statistics: Min. 0.001055719; Valid 12422.0; Mean 0.01047150842384479; Max. 0.072695186; StDev 0.007128734300239727

Variable Format: numeric

Notes: UNF:6:SBhDvPLLkZ6MivcWej5Ajw==

20191128

f12484 Location:

Summary Statistics: Min. 0.001172546; Max. 0.095174881; StDev 0.008295963538920413; Mean 0.011807281611495732; Valid 12422.0;

Variable Format: numeric

Notes: UNF:6:GsjKihBUfwTUkKbQ9x0bsw==

20191210

f12484 Location:

Summary Statistics: Min. 9.74965E-4; Valid 12422.0; Max. 0.058802038; StDev 0.006875042432627503; Mean 0.010146455586298505;

Variable Format: numeric

Notes: UNF:6:akVeupxzhRHjglRRjtScKQ==

20191222

f12484 Location:

Summary Statistics: StDev 0.007047108674875724; Min. 0.001202336; Valid 12422.0; Max. 0.070776626; Mean 0.009892150876831424;

Variable Format: numeric

Notes: UNF:6:9VWSHtj2HmGN2FycKh8V5Q==

20200103

f12484 Location:

Summary Statistics: Max. 0.056427622; Valid 12422.0; StDev 0.006803982621158645; Mean 0.010376146654644983; Min. 9.87865E-4

Variable Format: numeric

Notes: UNF:6:caTor4X/IVvCLMor/j54ZQ==

20200115

f12484 Location:

Summary Statistics: Max. 0.073171763; Min. 0.001383149; Valid 12422.0; StDev 0.006892060746362689; Mean 0.010078117707293511

Variable Format: numeric

Notes: UNF:6:VJZM+R1N/bh3EM0JcUvGuQ==

20200127

f12484 Location:

Summary Statistics: Mean 0.01034165963073579; Max. 0.067126896; Min. 0.001153715; StDev 0.007246063385910825; Valid 12422.0

Variable Format: numeric

Notes: UNF:6:m2a6UBv153ZdFbzfW4cQHg==

20200208

f12484 Location:

Summary Statistics: Valid 12422.0; Min. 0.001160779; Max. 0.052976814; Mean 0.009909627188053452; StDev 0.006311177916252428

Variable Format: numeric

Notes: UNF:6:S02KZSNioW8MQLdgS+6nfA==

20200220

f12484 Location:

Summary Statistics: Max. 0.070087233; Valid 12422.0; Min. 0.00135019; StDev 0.006619550437033074; Mean 0.009972066689180487

Variable Format: numeric

Notes: UNF:6:hV8sFHCv9sB5MX6w8x13IQ==

20200303

f12484 Location:

Summary Statistics: Valid 12422.0; StDev 0.006785041674024357; Mean 0.01036207904306875; Max. 0.064167537; Min. 0.001281681

Variable Format: numeric

Notes: UNF:6:5jnaaqKNusYR1FFRh1cn9g==

20200315

f12484 Location:

Summary Statistics: StDev 0.0069831026409167395; Max. 0.06782119; Min. 0.001473068; Mean 0.010764457257204957; Valid 12422.0

Variable Format: numeric

Notes: UNF:6:7DM8QKY8VIY0BsjDPtqSog==

20200327

f12484 Location:

Summary Statistics: Min. 0.001085381; Mean 0.010557466457092254; Valid 12422.0; Max. 0.057611734; StDev 0.006728903911548635;

Variable Format: numeric

Notes: UNF:6:ZwI8u6FH8w0WitjgCEabDw==

20200408

f12484 Location:

Summary Statistics: Valid 12422.0; StDev 0.006937467913713071; Mean 0.010483186237642893; Min. 0.001131548; Max. 0.064775421

Variable Format: numeric

Notes: UNF:6:05UfP2iGIDBp9OW7ouhOdw==

20200420

f12484 Location:

Summary Statistics: Valid 12422.0; StDev 0.009359354577453799; Mean 0.013858541390597327; Max. 0.093137984; Min. 0.001679321

Variable Format: numeric

Notes: UNF:6:D4vMEK9IjUyxRXP5o3XQuw==

20200502

f12484 Location:

Summary Statistics: Min. 0.00112123; StDev 0.006778959833565988; Valid 12422.0; Max. 0.068515518; Mean 0.010473219398003542

Variable Format: numeric

Notes: UNF:6:DdL66iP8sh/bty/TMsQECA==

20200514

f12484 Location:

Summary Statistics: Mean 0.010523909966833039; Max. 0.06503759; Min. 0.0013226; Valid 12422.0; StDev 0.006859371474914462

Variable Format: numeric

Notes: UNF:6:TuzNXNoz2jBF4FO8duyzzQ==

20200526

f12484 Location:

Summary Statistics: Valid 12422.0; Max. 0.053189358; StDev 0.00646015265173581; Mean 0.0099801960379971; Min. 6.60247E-4;

Variable Format: numeric

Notes: UNF:6:CDenCOKbWlTb+Wsan5NKDg==

20200607

f12484 Location:

Summary Statistics: Mean 0.01031002980969248; Valid 12422.0; Max. 0.058366834; StDev 0.006853460066721621; Min. 0.001299177;

Variable Format: numeric

Notes: UNF:6:gCRTtZdDRFYwB4i+9wKguw==

20200619

f12484 Location:

Summary Statistics: Mean 0.010215768829898565; Max. 0.078180915; Min. 0.001058169; StDev 0.006800348404979559; Valid 12422.0

Variable Format: numeric

Notes: UNF:6:IlTmFptCwSBFsfzxSYY3Ig==

20200701

f12484 Location:

Summary Statistics: StDev 0.006796200263052156; Min. 9.8809E-4; Max. 0.065801387; Valid 12422.0; Mean 0.01026618208026083

Variable Format: numeric

Notes: UNF:6:2aZgGYpJV2rBIWS+qDrqhQ==

20200713

f12484 Location:

Summary Statistics: Valid 12422.0; Mean 0.010338293474400257; StDev 0.006915180547541135; Max. 0.067549513; Min. 9.17407E-4

Variable Format: numeric

Notes: UNF:6:SgA1Cn5ZOCPsx2P6tlin+g==

20200806

f12484 Location:

Summary Statistics: Mean 0.010447416626308163; StDev 0.006954066722118989; Max. 0.063920067; Valid 12422.0; Min. 0.001329637;

Variable Format: numeric

Notes: UNF:6:eO7el6EmA5qX17gJZeHhbw==

20200818

f12484 Location:

Summary Statistics: Min. 0.001244895; Mean 0.010979228364353564; StDev 0.007744251718773705; Max. 0.067787198; Valid 12422.0

Variable Format: numeric

Notes: UNF:6:D4J+Xlh+buj8kmrMXv3OEw==

20200911

f12484 Location:

Summary Statistics: Max. 0.060863121; Min. 9.89484E-4; StDev 0.007455474329499179; Mean 0.01086228214361617; Valid 12422.0;

Variable Format: numeric

Notes: UNF:6:9F0esMzOhwwhfv7Dny7k/w==

20200923

f12484 Location:

Summary Statistics: StDev 0.008336617888724846; Max. 0.06712534; Min. 0.001093161; Valid 12422.0; Mean 0.011409422101110931;

Variable Format: numeric

Notes: UNF:6:d0dBsc+ktx8m9JW4Rt8ooQ==

20201005

f12484 Location:

Summary Statistics: Valid 12422.0; Max. 0.094462576; StDev 0.008381401072087973; Mean 0.011417117033971986; Min. 9.35412E-4

Variable Format: numeric

Notes: UNF:6:DQ8QQOEwfiofdXrUq2feSg==

20201017

f12484 Location:

Summary Statistics: Valid 12422.0; Max. 0.080012519; Min. 0.001143967; Mean 0.011752230464981486; StDev 0.008641158404864962

Variable Format: numeric

Notes: UNF:6:3nkYvzrfM2G3Sg9y2L7qfA==

20201029

f12484 Location:

Summary Statistics: Mean 0.011708843440186767; Min. 0.001249542; Valid 12422.0; StDev 0.008361653540677833; Max. 0.066240891;

Variable Format: numeric

Notes: UNF:6:isKYuoDZc3xFnQxIstu7fw==

20201110

f12484 Location:

Summary Statistics: Valid 12422.0; Min. 0.001120463; Max. 0.097087634; Mean 0.01147530986588311; StDev 0.008535973992701196

Variable Format: numeric

Notes: UNF:6:GWHP036P4nLG7IbWnmAL1g==

20201122

f12484 Location:

Summary Statistics: Max. 0.080965368; StDev 0.0077474968125653436; Valid 12422.0; Mean 0.010881779140074063; Min. 6.44899E-4

Variable Format: numeric

Notes: UNF:6:qV0jVROBVIY8fTZe5R3tLA==

20201204

f12484 Location:

Summary Statistics: Min. 0.001065983; Mean 0.01047169681073901; Valid 12422.0; Max. 0.079490632; StDev 0.007605962525571054;

Variable Format: numeric

Notes: UNF:6:7yWe18SvUCuZVfRnkkHDrQ==

20201216

f12484 Location:

Summary Statistics: Min. 0.001047371; StDev 0.007621001644326746; Mean 0.010558236039768154; Valid 12422.0; Max. 0.077923948

Variable Format: numeric

Notes: UNF:6:ha+BsBd8zbKiWigKLfrbsw==

20201228

f12484 Location:

Summary Statistics: Min. 0.001249909; Valid 12422.0; Max. 0.06114713; Mean 0.010422522841490905; StDev 0.007049334371326052

Variable Format: numeric

Notes: UNF:6:IW0MePTUo1xOq6VyqGpDuA==

20210121

f12484 Location:

Summary Statistics: Mean 0.010533273423361775; Valid 12422.0; Max. 0.085927522; Min. 0.00110041; StDev 0.007534449143458973

Variable Format: numeric

Notes: UNF:6:aZ5mj1MuWoYGVoeDJ9hTEw==

20210202

f12484 Location:

Summary Statistics: Mean 0.010096787746176143; Min. 9.28175E-4; Valid 12422.0; Max. 0.058659442; StDev 0.007331078737315687

Variable Format: numeric

Notes: UNF:6:e/LR2x3pA/k7xhEX+NuLSA==

20210214

f12484 Location:

Summary Statistics: Mean 0.009496826560054742; StDev 0.006817532275185895; Min. 9.70368E-4; Valid 12422.0; Max. 0.070009636

Variable Format: numeric

Notes: UNF:6:L46QmmbRmB22Y2YUKUMckg==

20210226

f12484 Location:

Summary Statistics: Min. 0.001061856; Valid 12422.0; StDev 0.006654954514188562; Mean 0.009591528658831108; Max. 0.05675151

Variable Format: numeric

Notes: UNF:6:3ao6wqDdN+w3aQQ9vGPFrg==

20210310

f12484 Location:

Summary Statistics: Valid 12422.0; Min. 0.001031535; StDev 0.00671792371085058; Mean 0.009887442157704077; Max. 0.079699011

Variable Format: numeric

Notes: UNF:6:UIRddBIRC/KHs0II3uWlLg==

20210322

f12484 Location:

Summary Statistics: Mean 0.011378814820238285; Min. 0.001162916; Max. 0.08612804; Valid 12422.0; StDev 0.008133625755530128

Variable Format: numeric

Notes: UNF:6:xcouGPGZNB4M/ABl8NtzBw==

20210403

f12484 Location:

Summary Statistics: StDev 0.006635686495898435; Mean 0.010269588647399776; Valid 12422.0; Min. 9.56029E-4; Max. 0.074910581;

Variable Format: numeric

Notes: UNF:6:lStUDLVo/sUiiz2Hz/hOCA==

20210415

f12484 Location:

Summary Statistics: Min. 0.001214633; Valid 12422.0; StDev 0.006672565502787915; Max. 0.058514369; Mean 0.010239794656094026

Variable Format: numeric

Notes: UNF:6:3D+Xkqm22UtjdYX/jd/z9Q==

Other Study-Related Materials

Label:

Metadata_TSF.txt

Notes:

text/plain

Other Study-Related Materials

Label:

Prediction_VH_Kunene-1.csv

Notes:

text/csv

Other Study-Related Materials

Label:

Prediction_VH_Kunene.csv

Notes:

text/csv

Other Study-Related Materials

Label:

Raster_Operations_Clean_Code.R.txt

Notes:

text/plain

Other Study-Related Materials

Label:

target_very_big_Kunene_VH.csv

Notes:

text/csv

Other Study-Related Materials

Label:

time_series_forest.py

Notes:

text/x-python

Other Study-Related Materials

Label:

training_VH_Kunene.csv

Notes:

text/csv